China Hot selling 10c Universal Joint for CZPT

Product Description

Spicer  P (mm) R (mm) Caterpillar Precision  Rockwell  GKN Alloy Neapcon Serie  Bearing type
5-2002X 33.34 79 644683 951 CP2002 HS520   1-2171 2C 4LWT
5-2117X 33.34 79 316117 994   HS521   1-2186 2C 4LWD
5-2116X 33.34 79 6S6902 952 CP2116   1063   2C 2LWT,2LWD
5-3000X 36.5 90.4 5D9153 536   HS530 1711 3-3152 3C 4LWT
5-3014X 36.5 90.4 9K1976 535   HS532     3C 2LWT,2LWD
5-4143X 36.5 108 6K 0571 969   HS545 1689 3-4143 4C 4HWD
5-4002X 36.5 108 6F7160 540 CP4002 HS540 1703 3-4138 4C 4LWT
5-4123X 36.5 108 9K3969 541 CP4101 HS542 1704 3-4123 4C 2LWT,2LWD
5-4140X 36.5 108 5M800 929 CP4130 HS543   3-4140 4C 2LWT,2HWD
5-1405X 36.5 108   549     1708   4C 4LWD
5-4141X 36.5 108 7M2695 996         4C 2LWD,2HWD
5-5177X 42.88 115.06 2K3631 968 CP5177 HS555 1728 4-5177 5C 4HWD
5-5000X 42.88 115.06 7J5251 550 CP5122 HS550 1720 4-5122 5C 4LWT
5-5121X 42.88 115.06 7J5245 552 CP5101 HS552 1721 4-5127 5C 2LWT,2LWD
5-5173X 42.88 115.06   933   HS553 1722 4-5173 5C 2LWT,2HWD
5-5000X 42.88 115.06   999         5C 4HWD
5-5139X 42.88 115.06             5C 2LWD,2HWD
5-6102X 42.88 140.46 643633 563 CP62N-13 HS563 1822 4-6114 6C 2LWT,2HWD
5-6000X 42.88 140.46 641152 560 CP62N-47 HS560 1820 4-6143 6C 4LWT
5-6106X 42.88 140.46 1S9670 905 CP62N-49 HS565 1826 4-6128 6C 4HWD
G5-6103X 42.88 140.46   564     1823 4-6103 6C 2LWT,2LWD
G5-6104X 42.88 140.46   566     1824 4-6104 6C 4LWD
G5-6149X 42.88 140.46             6C 2LWD,2HWD
5-7105X 49.2 148.38 6H2577 927 CP72N-31 HS575 1840 5-7126 7C 4HWD
5-7000X 49.2 148.32 8F7719 570 CP72N-32 HS570 1841 5-7205 7C 4LWT
5-7202X 49.2 148.38 7J5242 574 CP72N-33 HS573 1843 5-7207 7C 2LWT,2HWD
5-7203X 49.2 148.38   575 CP72N-55     5-7208 7C 4LWD
5-7206X 49.2 148.38   572 CP72N-34   1842 5-7206 7C 2LWT,2LWD
5-7204X 49.2 148.38   576 CP72N-57     5-7209 7C 2LWD,2HWD
5-8105X 49.2 206.32 6H2579 928 CP78WB-2 HS585 1850 6-8113 8C 4HWD
5-8200X 49.2 206.32   581 CP82N-28   1851 6-8205 8C 4LWT

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: ISO, Ts16949
Structure: Single
Material: 20cr
Type: Universal Joint
Transport Package: Box + Plywood Case
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

universal joint

Can universal joints be used in marine and offshore applications?

Yes, universal joints can be used in marine and offshore applications. Here’s a detailed explanation:

Marine and offshore environments present unique challenges in terms of harsh operating conditions, exposure to saltwater, vibrations, and high torque requirements. Universal joints offer several advantages that make them suitable for use in these demanding applications.

1. Misalignment Compensation: Marine and offshore systems often require the transmission of rotary motion between misaligned shafts due to the dynamic nature of the environment. Universal joints excel at compensating for angular misalignment, allowing for smooth power transmission even when the shafts are not perfectly aligned.

2. Torque Transmission: Universal joints are capable of handling high torque loads, which is crucial in marine and offshore applications. They can efficiently transfer power between the main engine or motor and various equipment, such as propellers, winches, pumps, or generators.

3. Compact Design: Space is often limited in marine and offshore systems, and universal joints offer a compact design compared to alternative methods of transmitting motion between misaligned shafts, such as gearboxes or flexible couplings. This compactness allows for more efficient use of available space.

4. Corrosion Resistance: Marine and offshore environments are highly corrosive due to the presence of saltwater and other corrosive agents. Universal joints can be designed and manufactured using materials that exhibit excellent corrosion resistance, such as stainless steel or non-corroding alloys, to ensure long-term performance and reliability in these environments.

5. Sealing and Lubrication: Proper sealing and lubrication are critical in marine and offshore applications to protect the universal joint’s internal components from water ingress and corrosion. Specialized sealing mechanisms, such as lip seals or labyrinth seals, can be implemented to prevent water intrusion, while effective lubrication systems ensure smooth operation and reduce wear.

6. Shock and Vibration Resistance: Marine and offshore equipment are subjected to significant shock and vibration loads due to wave motion, vessel movement, or equipment operation. Universal joints are designed to withstand these dynamic forces and provide reliable power transmission in such conditions. The use of high-quality bearings, robust construction, and proper balancing contribute to their resilience against shock and vibration.

7. Customization: Universal joints can be customized to suit specific marine and offshore applications. Manufacturers can tailor the design and materials to meet unique requirements, such as high-speed operation, extreme temperature variations, or specific size constraints. Customization ensures that the universal joints are optimized for their intended use, maximizing their performance and reliability.

When utilizing universal joints in marine and offshore applications, it is crucial to consider factors such as load requirements, environmental conditions, maintenance procedures, and compliance with relevant industry standards and regulations. Regular inspection, maintenance, and proper lubrication are necessary to ensure the longevity and reliable operation of universal joints in these challenging environments.

In summary, universal joints can be effectively used in marine and offshore applications due to their ability to compensate for misalignment, handle high torque loads, compact design, corrosion resistance, sealing and lubrication capabilities, shock and vibration resistance, and customization options. The selection and design of universal joints should consider the specific requirements and challenges associated with marine and offshore environments to ensure optimal performance and reliability.

universal joint

How do you address the effect of temperature variations on a universal joint?

Addressing the effect of temperature variations on a universal joint involves considering factors such as material selection, lubrication, and thermal expansion. Here’s a detailed explanation:

Temperature variations can have an impact on the performance and durability of universal joints. Extreme temperatures can affect the materials, lubrication, and dimensional stability of the joint components. To address these effects, the following measures can be taken:

  • Material Selection: Choosing materials with appropriate temperature resistance is crucial. The materials used in universal joints should have a suitable operating temperature range to withstand the expected temperature variations. For example, selecting heat-resistant alloys or materials with low thermal expansion coefficients can help mitigate the effects of temperature changes.
  • Lubrication: Proper lubrication is essential for reducing friction and wear in universal joints, especially under temperature variations. Lubricants with high-temperature stability and viscosity should be selected to ensure adequate lubrication at both low and high temperatures. It’s important to follow the manufacturer’s recommendations regarding lubrication intervals and the use of lubricants suitable for the operating temperature range.
  • Thermal Expansion Compensation: Universal joints can experience dimensional changes due to thermal expansion or contraction. These changes can affect the alignment and performance of the joint. To address this, measures such as incorporating design features that allow for thermal expansion compensation, using materials with low thermal expansion coefficients, or incorporating flexible elements can help minimize the impact of temperature variations on the joint’s operation.
  • Insulation: In situations where extreme temperatures are anticipated, providing insulation or heat shielding around the universal joint can help maintain more stable operating conditions. Insulation materials can help reduce the transfer of heat to or from the joint, minimizing the temperature variations experienced by the components.
  • Temperature Monitoring: Regular monitoring of the operating temperature of the universal joint can help identify any abnormal temperature variations that may indicate issues with lubrication, excessive friction, or other problems. Temperature sensors or thermal imaging techniques can be utilized for monitoring purposes.

It’s important to note that the specific measures taken to address temperature variations may depend on the application, the expected temperature range, and the manufacturer’s recommendations. Additionally, proper maintenance practices, including inspection, cleaning, and lubrication, are essential for ensuring the optimal performance and longevity of universal joints under temperature variations.

In summary, addressing the effect of temperature variations on a universal joint involves considering material selection, lubrication, thermal expansion compensation, insulation, and temperature monitoring. By implementing appropriate measures, the impact of temperature variations on the universal joint’s performance and durability can be minimized.

universal joint

What are the benefits of using a universal joint in a mechanical system?

Using a universal joint in a mechanical system offers several benefits that contribute to the efficient and reliable operation of the system. Here are some of the key advantages:

  • Misalignment compensation: One of the primary benefits of a universal joint is its ability to compensate for misalignment between rotating shafts. Universal joints can effectively transmit rotary motion between shafts that are not perfectly aligned, allowing for flexibility in system design and assembly. This flexibility accommodates various installation constraints and helps to minimize stress and wear on components.
  • Angular motion transmission: Universal joints enable the transmission of angular motion between shafts that are not parallel or collinear. They can transfer rotational movement even when the shafts are at different angles to each other. This capability is particularly useful in applications where the shafts need to be connected at non-linear or offset angles, providing versatility and enabling complex mechanical systems.
  • Torque transmission: Universal joints are capable of transmitting torque between shafts efficiently. They allow for the transfer of power from one shaft to another without a direct and rigid connection. This feature is especially important in applications where there may be slight misalignment or movement between the shafts due to factors like suspension systems, articulation, or vibration.
  • Reduced vibration and shock absorption: Universal joints can help dampen vibration andshocks in a mechanical system. They absorb and distribute the impact forces caused by uneven movement or external disturbances, reducing the transmission of vibrations to other parts of the system. This feature is particularly beneficial in applications where smooth operation and reduced wear and tear are essential, such as automotive drivelines or industrial machinery.
  • Constant velocity transmission: Certain types of universal joints, such as double joints or constant velocity joints, provide constant velocity transmission. These joints eliminate speed variations and maintain a consistent rotational speed even when the input and output shafts are at different angles. Constant velocity transmission is crucial in applications where precise and uniform motion is required, such as automotive steering systems or robotics.
  • Flexibility and articulation: Universal joints offer flexibility and articulation, allowing for movement and rotation in multiple directions. They can accommodate changes in the orientation and position of connected shafts, providing mechanical systems with the ability to adapt to dynamic conditions. This flexibility is particularly advantageous in applications involving moving parts, such as suspension systems, robotic arms, or machinery with articulating components.
  • Compact design: Universal joints are relatively compact in size, making them suitable for applications with space constraints. Their compact design allows for efficient integration into mechanical systems without occupying excessive space. This feature is valuable in various industries, including automotive, aerospace, and robotics, where optimizing space utilization is crucial.
  • Reliability and durability: Universal joints are designed to be durable and reliable, with the ability to withstand high loads, torque, and operating conditions. They are constructed from robust materials and undergo rigorous testing to ensure long-lasting performance. This reliability makes them suitable for demanding applications in industries such as automotive, manufacturing, agriculture, and more.

The benefits of using a universal joint in a mechanical system contribute to improved functionality, increased efficiency, and extended component lifespan. By enabling misalignment compensation, angular motion transmission, torque transfer, vibration reduction, constant velocity transmission, flexibility, and compact design, universal joints enhance the overall performance and reliability of mechanical systems.

China Hot selling 10c Universal Joint for CZPT  China Hot selling 10c Universal Joint for CZPT
editor by CX 2024-03-13

Recent Posts